
1.  Introduction
Volcanic eruptions are the most important natural radiative forcing on the climate system during the last 
millennium (Crowley, 2000; Masson-Delmotte et al., 2013; G. A. Schmidt et al., 2012). Large explosive vol-
canic eruptions emit sulfur into the upper troposphere and lower stratosphere, creating aerosols that reduce 
incoming solar radiation, altering the planet's energy balance, and cooling global mean surface tempera-
tures (Robock, 2000; D. P. Schneider et al., 2009). They are also our only, albeit imperfect, natural analog for 
solar radiation management using stratospheric aerosols (Robock et al., 2013). The majority of studies on 
the climatic effects of volcanic eruptions have focused on the global impact of tropical eruptions, while the 
effects of high-latitude eruptions are less well understood but no less important (Kravitz & Robock, 2011; 
Pausata et al., 2015; Toohey et al., 2019). High-latitude eruptions have had a profound effect on both climate 
and society. An extra-tropical Northern Hemisphere eruption in 536 CE (Sigl et al., 2015) is linked to frigid 
temperatures, crop failures, and famine across Europe and Asia (Helama et al., 2018; Newfield, 2018) and 
marked the onset of the Late Antique Little Ice Age (Büntgen et al., 2016). The eruption of Alaska's Okmok 
volcano in 43 BCE was one of the largest high latitude volcanic eruptions of the past 2,500 years, caused 
widespread cooling across the Northern Hemisphere, and may have contributed to the eventual demise of 
the Roman Republic (McConnell et al., 2020). The 1783–1784 CE Laki eruption caused widespread mortal-
ity in Iceland and across Europe and drought in tropical Africa and Asia (Oman et al., 2006; Thordarson & 
Self, 2003; Zambri et al., 2019a). A better understanding of the climate impacts following volcanic eruptions 
allows us to prepare for the consequences of future eruptions and to evaluate the ability of climate models to 
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simulate the Earth system response to changes in radiative forcing (Bethke et al., 2017; Newhall et al., 2018; 
Robock et al., 2013; Timmreck, 2012; Zambri et al., 2019a).

Eruptions from northern high-latitude volcanoes large enough to cause significant hemisphere-scale 
temperature anomalies are rare, which leads to substantial uncertainty concerning their impacts. Known 
high-latitude eruptions associated with significant radiative forcing during the Common Era occurred in 
536, 822, 939, 1,182, 1,210, 1783, and 1912 CE (Sigl et al., 2015), with only the 1912 Katmai (Novarupta) 
eruption in Alaska occurring during a period of widespread instrumental observations. Climate reconstruc-
tions based on paleoclimate proxy data address this limitation by providing an opportunity to increase the 
number of eruptions that can be analyzed. However, there remain significant discrepancies between the cli-
mate responses to volcanic eruptions in climate model simulations and those estimated from proxy recon-
structions in both magnitude and duration (K. J. Anchukaitis et al., 2012; D'Arrigo et al., 2013; LeGrande & 
Anchukaitis, 2015; S. Stevenson et al., 2017; Stoffel et al., 2015; Wilson et al., 2016). Among the main sources 
of uncertainty in climate reconstructions themselves are the spatial coverage of the proxy network, the sea-
sonal window recorded by the proxies, and biological memory and other nonclimatic or noise components 
of the proxy signal (K. J. Anchukaitis et al., 2012; D'Arrigo et al., 2013; Zhu et al., 2020). The precise timing 
of the eruption (S. Stevenson et al., 2017), the magnitude (Stoffel et al., 2015; Timmreck et al., 2009), the spa-
tial distribution of aerosol loading (D. P. Schneider et al., 2009; Toohey & Sigl, 2017; Toohey et al., 2019), and 
representation of important aerosol processes (Aubry et al., 2020; LeGrande et al., 2016; Mann et al., 2015; 
Marshall et al., 2019; Mills et al., 2016; Pinto et al., 1989; A. Schmidt et al., 2018; Timmreck et al., 2010) 
are all major sources of uncertainty in model simulations. Discrepancies can also arise when comparing 
modeled annual temperature to climate reconstructions from high-latitude tree-ring proxy data that pre-
dominantly reflect growing season temperatures (K. J. Anchukaitis et al., 2012; D'Arrigo et al., 2013; Zhu 
et  al.,  2020). Persistent growth anomalies associated with biological memory and proxy noise are more 
prevalent in tree-ring width (TRW) reconstructions than maximum latewood density (MXD) reconstruc-
tions, and studies comparing modeled climate response to proxy reconstructions have found that TRW can 
both underestimate the volcanic cooling effect and show a lagged response (D'Arrigo et al., 2013; Esper 
et al., 2015; Frank et al., 2007). MXD is therefore considered the best tree-ring metric for skillfully recon-
structing interannual high-latitude temperature variability, making it the most appropriate proxy when 
quantifying volcanic climate signals (K. J. Anchukaitis et al., 2017; Björklund et al., 2019; Esper et al., 2015, 
2018). Fundamentally, some of the uncertainty in proxy-model comparisons will arise due to the chaotic 
nature of the climate system. The actual climate response following a volcanic eruption and recorded by 
proxy data is subject to internal climate variability and would not be expected to reflect simply the forced 
climate response represented by a climate model ensemble mean.

Here we investigate the climate impacts of the 1783–1784 CE Laki eruption in Iceland, one of the largest 
and most significant high-latitude eruptions of the Common Era (Sigl et al., 2015; Thordarson & Self, 2003). 
The Laki eruption sequence began in June 8, 1783 and did not end until February 7, 1784, emitting ap-
proximately 122 megatons SO2 into the atmosphere (Thordarson & Self, 2003). The atmospheric pollution 
caused health problems and deaths from resulting respiratory disorders across Iceland and Europe (Grat-
tan et al., 2003; A. Schmidt et al., 2011; Thordarson & Self, 2003; Witham & Oppenheimer, 2004; Zambri 
et  al.,  2019b). Historical observations indicate the eruption had a measurable effect on climate and at-
mospheric conditions in Europe, while few records describe the effect on climate across North America 
(D'Arrigo et al., 2011; Thordarson & Self, 2003). Temperature reconstructions from tree-ring MXD in Alaska 
indicate an extraordinarily cold growing season (between April and September) in 1783 (K. J. Anchukaitis 
et al., 2013; K. R. Briffa et al., 1994; Jacoby et al., 1999), despite the fact that the Laki eruption in Iceland 
only started in June. While summer cooling is the expected climate response to volcanic eruptions, early 
instrumental and documentary historical records suggest the summer of 1783 was actually abnormally 
warm in Europe (Luterbacher et al., 2004; Thordarson & Self, 2003). However, most temperature recon-
structions using TRW and MXD indicate cooling over Europe, potentially due to the direct detrimental 
effect of the eruption's acidic haze on tree growth (K. R. Briffa et al., 1988; Schove, 1954). Temperature 
field reconstructions using a wide range of proxy observations and statistical methods also show different 
climate responses across the Northern Hemisphere (Figure 1). The reconstructions disagree on cooling over 
Europe, with Anchukaitis et al. (2017) capturing the historical observed warming over the UK, while all 
reconstructions would suggest colder conditions over Fennoscandia, again in contrast to historical and early 
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instrumental records (Luterbacher et al., 2004; Thordarson & Self, 2003). Anchukaitis et al. (2017) and Guil-
let et al. (2017) show the strongest cooling over northwestern North America (Alaska and western Canada), 
and all reconstructions indicate warmer conditions over the western United States and northeastern Pacific 
(Hakim et al., 2016; Tardif et al., 2019; Tingley & Huybers, 2013). These differences arise due to distinct 
methodological approaches and varied proxy data networks.

To better understand and identify the precise timing of the climate response to the Laki eruption over 
northwestern North America, here we combine quantitative wood anatomy (QWA), climate model sim-
ulations, and proxy system modeling to examine the climate and proxy response to the eruption at a fine 
temporal resolution (daily-to-monthly) throughout 1783. Cell anatomical measurements across an annual 
ring provide evidence for the intraseasonal influence of climate on xylem development and provide higher 
resolution measurements than conventional X-ray densitometry (Björklund et al., 2020; Carrer et al., 2018; 
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Figure 1.  Proxy reconstructed temperature field anomalies in 1783 CE from (a), Tingley and Huybers (2013) (April–September), (b) Anchukaitis et al. (2017) 
(May–August), (c) Tardif et al. (2019) (annual), and (d) Guillet et al. (2017) (June–August). Values plotted are the temperature anomalies (oC) from the mean of 
reconstructed temperatures for the 3 years prior (1780–1782 CE) to the eruption at each grid point. The red triangle marks the location of the Laki volcano. Red 
circles mark the Firth River and Sukakpak sites.

TINGLEY - 1783  CE

 120°W
 

  60°W    0
° 

  6
0°

E
 

 120°E  180° 
(a) NTREND - 1783  CE

 120°W
 

  60°W    0
° 

  6
0°

E
 

 120°E  180° 
(b)

LMR - 1783  CE

 120°W
 

  60°W    0
° 

  6
0°

E
 

 120°E  180° 
(c) GUILLET - 1783  CE

 120°W
 

  60°W    0
° 

  6
0°

E
 

 120°E  180° 
(d)

-5 -4 -3 -2 -1 0 1 2 3 4 5

TEMPERATURE ANOMALY C



Journal of Geophysical Research: Atmospheres

Fonti et al., 2010; von Arx et al., 2016). Because tree cambial activity is highly responsive to short-term 
environmental changes, intra-annual climate signals are recorded in wood cellular characteristics that can 
better serve as records of seasonal climate conditions than TRW or MXD alone (Deslauriers et al., 2003; 
Fonti et al., 2010; Ziaco et al., 2014). Climate models provide an independent line of evidence for the ex-
pected ocean-atmosphere response to a volcanic eruption. Here we use modeled daily and monthly climate 
fields from simulations of the Laki eruption using the Community Earth System Model, version 1 (CESM1) 
with the Whole Atmosphere Community Climate Model (WACCM) atmospheric component, to understand 
the forced climate response and internal climate variability over Alaska (Zambri et al., 2019b). This model 
includes realistic aerosol microphysics and interactive chemistry critical for simulated volcanic eruptions 
(Mills et al., 2016, 2017; Pinto et al., 1989; A. Schmidt et al., 2010; Timmreck et al., 2010). Multiple ensem-
ble members allow us to separate the forced response from internal variability (Pausata et al., 2015; Zam-
bri et al., 2019b). Finally, proxy system models enable integration of paleoclimate proxy observations and 
climate model experiments by providing a forward model for simulating and interpreting the biophysical 
behavior of the tree-ring width proxy (M. Evans et al., 2013). Here we use a mechanistic model of tree-ring 
formation (K. J. Anchukaitis et al., 2020; Vaganov et al., 2006) to evaluate daily climate influence on the 
dynamics of tree-ring xylogenesis. This combination of independent methods and observations allows us to 
constrain the timing of the climate response to Laki in northwestern North America and reveals the impor-
tant role of timing and internal variability when comparing paleoclimate reconstructions to climate model 
simulations of volcanic eruptions.

2.  Methods
2.1.  Quantitative Wood Anatomy

Living and subfossil wood samples of white spruce (Picea glauca) were collected from the Firth River at lat-
itudinal treeline (68.65oN, 141.63oW), and from Sukakpak Mountain (67.60oN, 149.76oW) (K. J. Anchukaitis 
et al., 2013; D'Arrigo et al., 2014). Based on weather station data from 1977 to 2010, the Sukakpak site is in 
the warmer Central Interior climate division while the colder Firth River site is in the Northeast Interior di-
vision (Bieniek et al., 2012). We selected 22 cores (11 from each site) for quantitative wood anatomy (QWA) 
analysis that spanned the period from 1768 to 1798. The crossdated chronology, ring-width measurements, 
and MXD series were previously developed following standard dendrochronological procedures (K. J. An-
chukaitis et al., 2013; Andreu-Hayles et al., 2011; D'Arrigo et al., 2014). We used the original raw tree-ring 
width measurements to verify the dating of the 1783 ring in the 22 samples used here prior to processing for 
QWA analysis. For this study, we also created Firth River and Sukakpak TRW chronologies by fitting a cubic 
smoothing spline with 50% frequency response cutoff at 30 years to the raw ring width measurements using 
the R-package dplR (Bunn, 2008; R Core Team, 2019).

We cut the wood samples to a thickness of 9–10 microns using a Rotary Microtome (Microm HM355S). 
The wood microsections were stained with a safranin/Astra Blue solution, permanently fixed in Eukitt, 
and prepared following standard procedures (Gärtner & Schweingruber, 2013; von Arx et al., 2016). Digital 
images of the microsections were produced at the Swiss Federal Research Institute WSL in Birmensdorf, 
Switzerland, using a Zeiss Axio Scan Z1. We measured the cell lumen area (LA) and cell wall thickness 
(CWT) for the period 1768–1798 CE on all samples using the ROXAS (v3.1) image analysis software (von 
Arx & Carrer, 2014). The cell wall thickness of all four cell walls (the two tangential and two radial walls per 
tracheid cell) was measured to obtain an average CWT per cell (Prendin et al., 2017). We excluded meas-
urements of samples with cell walls damaged during sampling or preparation. A total of 754,228 tracheid 
cells were measured over the period 1768–1798. For analysis, we divided each ring into 10 equal increments 
equivalent to the percent of total width of each ring and assigned the measured cells to the corresponding 
increment based on their position in each ring. We then calculated the median CWT and median LA in each 
of these increments. Median values were used here to avoid bias due to the influence of individual outliers. 
We calculated anatomical MXD as the maximum ratio between the cell wall area and the total cell area 
(the sum of cell wall and cell lumen area) throughout the ring at a resolution of 10 μm following Björklund 
et al. (2020). Earlywood and latewood widths for each ring were determined by Mork's index at a 10 μm res-
olution (Denne, 1989; Mork, 1928). We obtained the average number of cells in a radial file across each ring 
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using the RAPTOR program (Peters et al., 2018). In the wood anatomical, climate simulation, and proxy 
simulation analyses, we distinguish between Laki (1783) and noLaki (the 15 years before and after in the 
QWA, or the model experiments without a simulated eruption). We used the nonparametric Mann–Whitney 
U test to evaluate significant differences between Laki and noLaki CWT, LA, and the relative location of the 
earlywood/latewood boundary. The Mann–Whitney U test evaluates the null hypothesis that two independ-
ent samples of data come from a population with equal medians. We chose this test because the Laki and 
noLaki QWA measurements do not have a normal distribution and the sample sizes are not equal.

2.2.  Climate Model Simulations

We use the modeled daily and monthly temperature, winds, and sea level pressure (SLP) fields from the 
climate model experiments conducted by Zambri et al. (2019b) to investigate the range of potential climate 
anomalies over Alaska following the Laki eruption. Zambri et al. (2019b) use CESM1(WACCM), the high-
top atmospheric component of CESM1. WACCM has 70 vertical levels, a model top of 5.1 × 10−6 hPa and 
0.9° latitude x 1.25° longitude horizontal resolution, with interactive atmospheric chemistry, radiation, and 
dynamics, which makes it an appropriate model to use when studying the effect of volcanic aerosols on 
the stratosphere (Mills et al.,  2017). Simulations with interactive aerosols can more realistically capture 
potential changes in climate variability induced by the eruption compared to simulations with prescribed 
aerosol loads (Mills et al., 2016). Zambri et al. (2019b) simulated the Laki eruption using the eruption char-
acteristics described by Thordarson and Self (2003); the 1783–1784 CE Laki eruption began on June 8, 1783 
and lasted for approximately 8 months. The series of eruptions injected a total of 122 Tg of SO2 into the 
atmosphere, about 94 Tg into the upper troposphere/lower stratosphere, between 9 and 13 km, and another 
28 Tg was emitted at the surface (Thordarson and Self, 2003). Uncertainties in the sulfur concentrations 
in tephra used to estimate total emissions could be upward of ±20%, however (D. S. Stevenson et al., 2003; 
Oman et al., 2006).

The climate model simulation experiments used here were initialized from four sets of initial conditions, 
each with different background states of global circulation. The four initial conditions that best matched 
historical observations of atmospheric conditions over Europe around June 8, 1783 were chosen from a 
25-years control run. One 40-member ensemble with the Laki eruption (Laki), and another 40-member 
ensemble without the eruption (noLaki), were created from 10 ensemble members for each of the four 
initial conditions (Zambri et al., 2019b). We calculated a monthly Laki–noLaki temperature difference for 
each run by subtracting the noLaki mean from each individual Laki run. We adopted the procedure used by 
Deser et al. (2014), mapping the contributions from the forced response and the internal variability for the 
runs with the most negative and most positive Laki–noLaki temperature anomalies. The forced response 
was obtained by averaging all 40 Laki ensemble members and the internal variability was obtained by sub-
tracting the forced response from the Laki–noLaki temperature anomaly (Deser et al., 2014). We evaluated 
the atmospheric circulation response using the Laki–noLaki sea level pressure (SLP) and 850-hPa wind 
anomalies. In addition to evaluating the full 40-member ensemble, we selected two specific members from 
the experiment (Run 5 and Run 40), to represent the most extreme cooling and warming, respectively, at our 
sites during the latter part of the growing season.

We evaluated the model's ability to reproduce absolute temperatures by comparing monthly mean temper-
atures at each site as simulated by the CMIP5 CESM1(WACCM) modern historical run (Marsh et al., 2013) 
and a CESM1(WACCM) SO2 injection control (1975–2016) run (Mills et al., 2017) to the equivalent grid 
from the Climatic Research Unit (CRU) TS 4.03 temperature product (Harris et al., 2014) and the NCEP/
NCAR Reanalysis (Kalnay et al., 1996). We also compared the gridded observations, Reanalysis, and the 
simulations with several of the closest stations in the US and Canada from the Global Historical Climatolo-
gy Network (v3; Lawrimore et al., 2011). At the site-level, however, we were unable to quantify a consistent 
mean temperature bias between models, gridded observations, or Reanalysis, with differences in growing 
season temperatures varying up to several Celsius degrees colder or warmer depending on the particular 
paired data used for the comparison. Because of these inconsistencies, we did not apply a temperature 
correction to the Laki or noLaki model experiments used here. The 18th-century model bias is therefore a 
potential source of additional uncertainty in our climate and proxy systems modeling analyses described 
below.
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2.3.  Proxy Systems Modeling

We used the Vaganov–Shashkin tree-ring proxy systems model (VSM) 
to simulate daily cambial growth activity throughout a year under Laki 
conditions and a year without Laki conditions at the Sukakpak and Firth 
River sites (K. J. Anchukaitis et al., 2020; M. N. Evans et al., 2006; Vaganov 
et al., 2006). VSM relates environmental factors to daily cambial growth 
rates using a piecewise linear function Vaganov et al. (2011) to simulate 
annual ring widths and associated daily and cellular-scale outputs that can 
be compared with finer-scale characteristics of the annual ring (E. A. Ba-
bushkina et al., 2019; H. C. Fritts et al., 1991; Vaganov et al., 2006, 2011). 
The model calculates a daily relative growth rate (from 0 to 1, dimension-
less) for temperature and soil moisture (itself a modeled function of pre-
cipitation, snowmelt, evapotranspiration, and soil drainage) and a minimi-
zation function causes cellular growth and division to be controlled by the 
most limiting environmental factor scaled by daylength. VSM models the 
cell formation and ring width of an idealized average tree without geomet-
ric growth trends but does not simulate cell wall thickening or wood den-
sity directly (K. J. Anchukaitis et al., 2020). While absolute cell numbers 
are arbitrary, reflecting the differences observed between real trees, ring-
to-ring variability in these metrics reflects the changing pattern of daily 
growth-limiting factors (H. C. Fritts et al., 1991; Vaganov et al., 1990, 2006).

Here, daily 1783 temperature data of each site's nearest climate model 
grid cell from each run of the Laki and noLaki model ensembles were 

used as the primary temperature input. The Laki temperature curves and their counterpart noLaki tem-
perature curves are identical to each other until the day of the eruption, June 8th (day 159). We applied a 
12-days lowpass filter to the noisy daily temperature data to mimic the muted fluctuations of air tempera-
ture experienced directly by the cambium (K. J. Anchukaitis et al., 2020; M. N. Evans et al., 2006; Vaganov 
et al., 2006; Vermunt et al., 2012). The daily simulated precipitation output was not retained from the origi-
nal climate model experiments, so we randomly selected a year of daily precipitation data from the nearest 
meteorological station at Dawson, Yukon Territory, Canada([Peterson & Vose, 1997) for each run of VSM. 
Neither our simulations nor their interpretation are sensitive to this choice, however, as growth rates in 
the model are dominated in all cases by temperature limitation. We used the model parameters from Evans 
et al. (2006), with two modifications: we set the minimum temperature for tree growth to 0°C (K. J. An-
chukaitis et al., 2012, 2020; Tolwinski-Ward et al., 2013) and the temperature sum for initiation of growth to 
10°C, as Alaskan white spruce are adapted to cold conditions and growth begins before complete snowmelt 
in May (Gregory, 1971; Vaganov et al., 2006). We ran the model to simulate tree cell growth in 1783 as a 
discrete year twice, using the first run only to initialize realistic starting snow and soil moisture parameters 
for each Laki and noLaki ensemble member. The VSM data presented here are the results from the second 
set of simulations. Previous applications of VSM have shown that the model can successfully reproduce pat-
terns of interannual growth in both temperature and moisture-sensitive trees (K. Anchukaitis et al., 2006; 
K. J. Anchukaitis et al., 2020; Bunn et al., 2018; M. N. Evans et al., 2006; Vaganov et al., 1999, 2006, 2011).

3.  Results
3.1.  Quantitative Wood Anatomy

The results of the Mann–Whitney U test, used to evaluate significant differences between Laki and noLaki 
CWT and LA, are reported in Table 1. Latewood constitutes the last 20% of the ring for both sites during Laki 
and noLaki years, and the relative location of the earlywood/latewood boundary in the ring was not signif-
icantly different in Laki versus noLaki years. Latewood CWT in the Laki year (1783) is significantly lower 
(p < 0.001), than in the noLaki years at both sites. LA is only significantly higher (p < 0.05) in the Laki years 
in the last 10% of growth (Figure 3a, and 3b). CWT of the Laki year is only significantly lower than the no-
Laki years in the last 20% of growth for the Sukakpak site, while for the Firth River site is significantly lower 
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Firth river Sukakpak

% ring width CWT p-value LA p-value CWT p-value LA p-value

0–10 0.95 0.29 0.46 0.98

10–20 0.67 0.93 0.75 0.42

20–30 0.18 0.15 0.59 0.84

30–40 0.11 0.71 0.43 0.28

40–50 0.007 0.57 0.70 0.25

50–60 <0.001 0.92 0.60 0.39

60–70 <0.001 0.69 0.64 0.23

70–80 <0.001 0.29 0.08 0.49

80–90 < 0.001 0.07 <0.001 0.26

90–100 <0.001 0.02 <0.001 0.001

Note. Value shown in the columns are the significance (p-value) of the 
test for differences between Laki and noLaki measurements for the cells 
in the different relative positions of the tree rings (the % total ring width). 
See Methods for additional details.

Table 1 
Results of Mann–Whitney U Test Between Laki and noLaki Measurements 
of Cell Wall Thickness (CWT) and Cell Lumen Area (LA)
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in the last 60% of growth (Figure 2c, and 2d). While 1783 is generally closer to the pith in the Firth River 
trees and closer to the bark in Sukakpak trees, the difference in the CWT behavior between sites cannot be 
explained by the distinct average tree-age at each site alone. At Firth River, living trees, where 1783 is closer 
to the pith, and subfossil wood, where 1783 is closer to the bark, show a difference between the Laki and 
noLaki CWT in the last 60% of the ring. The response of the tangential CWT is less pronounced than the 
response of the radial CWT at both sites (Figure 3e-3h). The Firth River anatomical MXD and CWT of the 
last 10% of growth correlate highly (r > 0.95, p < 0.001 and r > 0.94, p < 0.001 respectively) with the existing 
Firth River MXD chronology from Anchukaitis et al. (2013). The average radial cell count was 13 ± 8 for 
noLaki years and 8 ± 2 for 1783 at Firth River, and 10 ± 4 for noLaki years and 9 ± 2 for 1783 at Sukakpak. 
However, for many of the Firth River samples, the 15 years prior to the eruption are close to the pith, and 
therefore tree geometry itself skews the average noLaki total cell count higher, with pre-eruption noLaki 
cell counts of 16 ± 9 and a post-eruption noLaki cell counts of 10 ± 4. We did not, however, detect any 
age-related trends in the LA or CWT data. The averaged cell count chronologies correlate highly (r = 0.84, 
p < 0.001 at Sukakpak and r = 0.89, p < 0.001 at Firth River) with the TRW chronologies at both sites. These 
high correlations show the intrinsic relationship between growth characteristics at cellular scale and mac-
roscopic ring features such as TRW and MXD (Figure 4).

3.2.  Climate Model Simulations

We observe a tendency across the 40-member CESM1(WACCM) experiment for a Laki-noLaki cooling 
across North America in September, the month in which the cell wall thickening process in the latewood is 
likely completed for Alaskan white spruce (Gregory, 1971; Rathgeber et al., 2016). Both August and Septem-
ber climate show similar responses to the eruption, therefore the choice to examine the simulation in either 
August or September does not affect our conclusions. The simulated late growing season climate response 
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Figure 2.  Example micrographs of four trees from Firth River and Sukakpak, stained with safranin/Astra blue. The 
eruption year 1783 is indicated in each. Three of these example trees show a typical “light ring” (D'Arrigo et al., 2014; 
Filion et al., 1986) or “blue ring” (Piermattei et al., 2015) structure characterized by thin cell walls throughout the 
latewood, while SMH2 is an example of relatively normal latewood growth until the last row of cells that have lower CWT.
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Figure 3.  CWT and LA measurements for Firth River and Sukakpak. The red line indicates the overall median cell measurement for the 1783 Laki year 
throughout the different relative positions in the ring. The red dots represent the median cell measurement for each individual tree throughout the ring. The 
black line indicates the overall median cell measurement for the noLaki years. The gray dots represent the medial cell measurement for each noLaki year in 
each tree.
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is spatially heterogeneous (Figure 5). For example, Run 5 shows ∼6°C of cooling compared to the noLaki 
average over the Firth River and Sukakpak sites in September, while Run 40 shows up to 2°C of warming 
over the two sites. The average temperature anomaly of the 40 Laki–noLaki ensemble members shows that 
the underlying forced response is cooling, with maximum cooling of 7°C in some areas of the Arctic Archi-
pelago and 1–2°C over the North American continent (Figure 6). Internal climate system variability in Run 
5 leads to cooling over the two sites which exacerbates the forced response, while warming due to internal 
variability in Run 40 dominates despite the underlying forced cooling response. Indeed, Run five resembles 
the climate response that would be most consistent with our tree-ring data, as it simulates the average grow-
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Figure 4.  Tree-ring width chronologies (black line) and cell count (red line) for (a) Sukakpak and (b) Firth River 
(Andreu-Hayles et al., 2011). (c) Existing MXD chronology (black line) from Anchukaitis et al. (2013) and the 
anatomical MXD measurements (blue line, this study) for Firth River. Values are normalized for comparison of the 
related but different measurements (the standardized tree-ring proxy chronologies vs. the cell number or anatomical 
wood density from this study). The data in this study were analyzed over the period 1768–1798.
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Figure 5.  September Laki-noLaki temperature anomalies from each of the 40 ensemble members. Anomalies were calculated by subtracting the noLaki mean 
temperature field from each Laki run. Red circles mark the Firth River and Sukakpak sites.
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ing season conditions followed by abrupt late summer cooling interpreted from the proxy data. There is a 
spatial gradient in the ensemble variability over Alaska; there is a wider spread of temperature anomalies in 
the north which then narrows in the south and along the coast (Figure 7). A positive SLP anomaly develops 
in September over the Bering Sea and Arctic Ocean in Run 5, with a negative SLP anomaly over Southeast 
Alaska; the high pressure anomaly brings cold northerly winds over Alaska.

3.3.  Proxy System Modeling

The VSM results using simulated daily temperature from the CESM1(WACCM) experiment confirm that 
xylem formation at Firth River and Sukakpak in the late 18th century is limited primarily by temperature 
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Figure 6.  September Laki-noLaki temperature anomalies decomposed following Deser et al. (2014) into (middle) 
internal and (bottom) forced components for two opposite ensemble members, (left) Run 5 and (right) Run 40. Red 
circles mark the Firth River and Sukakpak sites.
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with the seasonal growth pattern mediated by changes in daylength (Figure 9). For both the Laki and no-
Laki scenarios, growth begins in late May at both sites. On average, simulated cell differentiation from the 
cambium stops at day 236 (August 24th) and day 243 (August 31st) at Sukakpak for the Laki and noLaki 
year respectively, with 13 ± 7 cells produced in the Laki years and 19 ± 8 in the noLaki years. At Firth River, 
cell differentiation from the cambium stops on average at day 237 (August 25th) and day 243 (August 31st) 
for the Laki and noLaki year respectively, with 10 ± 5 cells produced in the Laki years and 16 ± 6 in the 
noLaki years. The temperature data from Run 5 (the cold extreme scenario) produces 13 cells in the Laki an-
nual ring at Firth River and 14 cells at Sukakpak, with the total growth rate decreasing toward the end of the 
growing season at both sites (Figure 10a, and 10c). The temperature data from Run 40 (the warm extreme 
scenario) produces a modeled cell count of 13 cells at Firth River and 26 cells at Sukakpak (Figure 10b, and 
10d). The high number of simulated cells in Run 40 at Sukakpak is due to the consistently warm tempera-
tures and therefore high growth rate throughout the entire growing season.

4.  Discussion
4.1.  Timing of the Laki Climate Response in Alaska

The timing and duration of the cell formation processes are important for interpreting the climate signal 
embedded in the cell characteristics. We can use the combination of our QWA data, proxy systems mode-
ling, and existing knowledge of xylogenesis in high latitude conifers to constrain the timing of the cooling in 
Alaska associated with the Laki eruption. Based on one year of observations, Gregory (1971) concluded that 
May temperatures controlled the start of cell division in Alaskan white spruce, that the cambium typically 
reactivates before all of the winter snow is gone, and that cell division in the cambium ceased by the end 
of August. This is also broadly consistent with the results of our proxy systems modeling. Temperature at 
the beginning of the growing season is the key limiting factor for the onset of cambial activity in the xylem, 
and therefore influences the total number of cells that can be produced in a year (Deslauriers et al., 2008). 
It takes 1–2 months for a cell to fully mature after exiting the cambium (Rathgeber et al., 2016), and cell 
wall thickening can last up to 40–60 days for the last formed cells of the year (Rossi et al., 2008). In our 
VSM simulations, we observe that the cambium initiated growth in late May and cell differentiation from 
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Figure 7.  Variance of September Laki-noLaki temperature anomalies across the 40 ensemble members. Red circles 
mark the Firth River and Sukakpak sites.
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the cambium ends slightly earlier but with a very large range of ensemble variability in the Laki year com-
pared to the noLaki years, leading to a shorter growing season in VSM by 6 ± 13 days at Firth River and 
7 ± 13 days at Sukakpak (Figure 9).

Importantly, however, a slightly shorter Laki growing season does not necessary affect the modeled number 
of cells in the simulated ring, which is consistent with our observations that ring width and cell number in 
1783 are unremarkable in our tree-ring samples from the two sites. At Firth River, the modeled number of 
radial cells is similar between the two model runs we selected as demonstrative of the range of September 
climate responses (Run 5 and Run 40; Figure 10). In our QWA analysis, we found that cell count is highly 
correlated to TRW, which corresponds with findings in other studies (K. J. Anchukaitis et al., 2020; Lange 
et al., 2020; Vaganov et al., 2006). The average cell number and TRW in the Laki year show that total cell pro-
duction was not negatively affected throughout most of 1783, suggesting environmental conditions during 
the cell production phase were normal. Early season temperatures can also influence LA, as low early sum-
mer temperature might hinder photosynthesis and therefore the cell enlargement phase (Körner, 2015). 
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Figure 8.  September Laki-noLaki SLP and wind anomalies for (left) Run 5 and (right) Run 40. SLP anomalies (hPa) 
are represented by filled color contours while wind anomalies are represented by vector arrows. Red circles mark the 
Firth River and Sukakpak sites.
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Laki year LA is not significantly different from the noLaki LA until the last 10% of growth at both sites 
(Figure 3), where it is actually slightly larger in the Laki year because the thinner cell wall is less constrict-
ing on the lumen (Cuny et al., 2014). The lack of significant anomalies in TRW, LA, and earlywood CWT 
in 1783 collectively indicates that the early summer and probably most of the growing season of that year 
experienced average climate conditions.

Because cell growth appears to have proceeded as normal in the beginning and middle of the growing 
season, the latewood CWT measurements indicate that the climate response to the Laki eruption occurred 
toward the end of the summer of 1783. This truncation of the growing season primarily affected the du-
ration of the latewood cell wall thickening process reflected by the reduced CWT (Rathgeber et al., 2016). 
Latewood CWT has been previously found to be positively correlated with August and September tempera-
tures, when the cell wall thickening process is expected to occur (Carrer et al., 2016; Castagneri et al., 2017; 
Rossi et al., 2006, 2012), and therefore the wide separation in latewood CWT between the Laki and noLaki 
years at both sites (Figure 3c, and 3d) is indicative of abrupt cooling in those months. ‘Light rings’ (D'Ar-
rigo et al., 2014; E. Babushkina et al., 2020; Filion et al., 1986; Gindl et al., 2000) or “blue rings” (Matisons 
et al., 2020; Piermattei et al., 2015) characterized by abnormally low latewood density are interpreted to be 
the result of an abrupt end of cell wall thickening following exceptionally low temperatures in the later part 
of the growing season (Figure 2).

The connection between reduced latewood CWT and anomalously cold late summer temperatures can 
explain the low 1783 MXD value in existing annual chronologies (K. J. Anchukaitis et al.,  2013; Jacoby 
et al., 1999). It has been observed that the main control on latewood density is the dimensions of the cell 
walls (Björklund et al., 2017). The low anatomical density (calculated as the cell wall area divided by the 
total cell area) in 1783 arises entirely from reduced cell wall area due to small CWT, as the total cell area 
is not significantly different between noLaki and Laki years. Previous studies using MXD in Alaska and 
western Canada have found that MXD has positive correlations with monthly temperatures in the April to 
September range (K. J. Anchukaitis et al., 2013; Andreu-Hayles et al., 2011; K. R. Briffa et al., 1992, 2002, 

EDWARDS ET AL.

10.1029/2020JD033544

14 of 22

Figure 9.  Simulated growth rates (0–1, dimensionless) for Firth River and Sukakpak based on the Vaganov-Shashkin tree-ring proxy systems model, averaged 
over the 40 (a), (d) Laki ensembles and the 40 (b),(e) noLaki ensembles. Differences between Laki and noLaki are shown in (c) and (f) for Firth and Sukakpak, 
respectively. The black, red, and blue lines represent the average total growth rate (g), average temperature-dependent growth rate (gT), and average moisture-
dependent growth rate (gW), respectively. The shading around each mean line shows the ±1 standard deviation around the mean value. The day of the Laki 
eruption is indicated by the vertical dashed line.
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2004; D'Arrigo et al., 2014), depending on the site. MXD has been interpreted to be partially determined by 
climate conditions during initial cell formation and enlargement, which accounts for the correlation with 
early growing season temperatures, while the correlation with later summer temperatures is driven by the 
occurrence of extremely cool or short summers (Vaganov et al., 2006; Yasue et al., 2000). A sudden period 
of extreme cold at the end of the growing season would be directly detrimental to the cell wall thickening 
process, and thus the low CWT may override any earlier imprint of the average June and July temperatures 
and latewood density in that year would reflect only the later August or September climate signal (Vaganov 
et al., 2006). The annual MXD signal in 1783 therefore reflects the significantly thinner latewood CWT that 
was most likely caused by rapid cooling in the late summer and an abrupt end of the growing season in 
August or September.

Distinct growth timing due to temperature can be seen in the differences in CWT between sites. The Laki 
year CWT diverges from the non-Laki years CWT earlier in the ring at Firth River than at Sukakpak (Fig-
ure  3c, and 3d). Previous studies have found that the start and end dates of conifer growth vary across 
elevation and latitudinal gradients; sites with higher mean temperatures generally have an earlier start and 
later end to growth (Cuny et al., 2018; Rossi et al., 2008, 2014, 2016). Low August temperature would affect 
the latewood CWT at Sukakpak, and the transition wood and latewood at Firth River. Firth River is also at 
treeline where trees are growing at their physiological limit and are more sensitive to temperature changes 
(D'Arrigo & Jacoby, 1999; Fritts, 1976). The trees at the warmer Sukakpak site may be able to tolerate a 
reduction in absolute temperatures when thickening of the transition wood is occurring, but this compen-
sation likely breaks down in the latewood as colder temperatures at both sites mark the end of the summer 
growing season. It is also possible that the site differences in the seasonal timing of CWT anomalies could 
reflect the spatial heterogeneity of the climate response to the Laki eruption (e.g., Figure 5).
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Figure 10.  Simulated growth rate (0–1, dimensionless) and cumulative cell numbers at Firth River and Sukakpak for Run 5 (left) and Run 40 (right) the 
Vaganov-Shashkin tree-ring proxy systems model. The blue line shows the model simulated cumulative cell number (right axis) throughout the season. The red 
line shows the total growth rate (left axis) for each run at each site during Laki years. The black line and shading show the average noLaki total growth rate and 
±1 standard deviation respectively. The day of the Laki eruption is indicated by the vertical dashed line.
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4.2.  Internal and Forced Variability in the Climate Response

Climate model simulations provide evidence for the timing and spatial extent of the climate response to the 
Laki eruption that is, independent of our proxy observations and provide complementary information for 
interpreting the proxy record. The availability of ensemble experiments allows the separation of the forced 
surface temperature response to volcanic eruption from the natural variability at a regional scale (Deser 
et al., 2014; Pausata et al., 2015). In our study here, the 40 ensemble members show a range of spatiotempo-
ral climate responses following the Laki eruption (Figure 5), each reflecting a combination of the underly-
ing forced cooling response and internal climate variability (Figure 6), and while the forced response over 
our study region is indeed summer cooling, the magnitude of internal variability can overwhelm this and in 
some members actually leads to a net warming in late summer over northern Alaska, as illustrated in Run 
40 (Figure 6). The remarkably thin latewood CWT at both of our study sites in 1783 is the result of a specific 
spatiotemporal climate response to the Laki eruption, most likely similar to the climate response seen in 
Run 5. Because our proxy data come from terrestrial high latitudes where our model simulations produce 
a range of cooling patterns and magnitudes across the ensemble members (Figures 5 and 7), considering 
internal variability in proxy-climate comparisons is important.

In addition to the direct temperature effect from shortwave forcing, volcanic eruptions can perturb atmos-
pheric circulation (DallaSanta et al., 2019; D'Arrigo et al., 2013; Driscoll et al., 2012; Liu et al., 2017; Rob-
ock, 2000; Stenchikov et al., 2006; Zanchettin et al., 2012). As shown above, different ensemble members 
produce different climate anomalies in response to the imposed forcing of the Laki eruption (Figure  5) 
and these are linked to concomitant circulation anomalies. In Run 5, the run with extreme late summer 
cooling, northerly wind anomalies (Figure 8) result in colder summer temperatures in interior Alaska and 
the Yukon Territory (Szeicz, 1996). Historical accounts also suggest a possible polar air mass incursion over 
Alaska following the Laki eruption, with northerly winds and ‘The Time Summer Time Did Not Come’ 
in interior Alaska at approximately the time period of the Laki eruption described in Oquilluk (1973), a 
collection of oral histories from the Kawerak people (Jacoby et al., 1999). Trees at latitudinal treeline are 
expected to be particularly sensitive to cold air incursions (D'Arrigo & Jacoby, 1999), so it is likely that our 
QWA data reflect the circulation anomaly that led to the intrusion of a northerly polar air mass and rapid 
late summer cooling.

Spatially variable regional temperature anomalies following volcanic eruptions may be broadly reflected 
in the different temperature reconstructions across northwestern North America (e.g., K. J. Anchukaitis 
et al., 2017; D'Arrigo et al., 2014; Jacoby et al., 1999). Briffa et al. (1994) observed that the most severe tem-
perature response to the Laki eruption was in central Alaska, while southern Alaska had a milder response. 
D'Arrigo et al. (2004) found that temperatures decreased over the Seward Peninsula following the Laki erup-
tion, but that the cooling was not as extreme as that inferred for interior Alaska. Thus while climate model 
simulations confirm that the forced response over our study region would be a surface cooling, different 
ensemble members show different temperature responses even at the site level within model resolution 
(Figure 5). As suggested above, these spatial gradients in the magnitude and even sign of the temperature 
response (Figure 5) could further explain some of the differences in QWA measurements between our two 
sites (Figure 3).

4.3.  Implications for Proxy-Model Comparisons

Eruption timing and the seasonality of the resulting climate impacts are important to consider when rec-
onciling model simulations and proxy reconstructions (Fischer et al., 2007; S. Stevenson et al., 2017). Our 
high-resolution cell anatomical measurements give us intra-seasonal signals of the climate response to the 
eruption, and the timing of the different cell formation processes provide additional information for un-
raveling the timing of the climate response. Cell production and enlargement processes in Firth River and 
Sukakpak white spruce trees in 1783 resulted in an average number of cells and average LA, indicative of 
normal early and mid-summer growing conditions, while the increasingly low CWT indicates later summer 
cooling until an abrupt end of the growing season. In this study the abrupt end of the growing season em-
beds a strong climate signal in the latewood CWT, which is translated to the annual MXD metric. While 
previous studies have used MXD temperature reconstructions to accurately reconstruct the cooling effect of 
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volcanic eruptions (K. R. Briffa et al., 1998; D'Arrigo & Jacoby, 1999; D'Arrigo et al., 2004; Esper et al., 2015; 
L. Schneider et al., 2017), our cellular-scale measurements here demonstrate that the timing of eruptions is 
an important consideration when interpreting MXD chronologies. The intra-annual and multivariate infor-
mation available from QWA provides an opportunity to refine knowledge about the timing of post-eruption 
cooling and suggest improved seasonal comparisons with climate model simulations. It is also possible to 
incorporate this intra-annual information directly into data assimilation approaches to climate reconstruc-
tion (Tardif et al., 2019). The lack of a Laki volcanic signal in TRW chronologies and total cell numbers 
from our two sites may in part reflect lagged signals known to occur in TRW chronologies (c.f. D'Arrigo 
et al., 2013; Esper et al., 2015; Frank et al., 2007); however, our simulations provide evidence that average 
TRW in 1783 could be simply caused by normal early summer temperatures alone, as our VSM results 
suggest the xylem cells could have already formed by the time the eruption's impact would have be severe 
enough to affect cell division and maturation. The different stages and timing of cell formation are reflected 
in the different proxies often used in proxy-climate comparisons, but their interpretation can also potential-
ly provide additional information on the specific timing of the eruption's climate impacts.

A number of studies have hypothesized that there could be an additional effect on tree growth due to chang-
es in light availability for photosynthesis following an eruption. Robock (2005) suggested that an increase in 
diffuse radiation caused by light scattering by volcanic aerosols could lead to more efficient photosynthesis 
(Gu et al., 2003), a reduced sensitivity of tree growth to subsequent temperature anomalies, and therefore an 
underestimation of the total cooling due to volcanic eruptions. However, Krakauer and Randerson (2003) 
found no evidence of this effect across the global tree-ring network, suggesting that if such a mechanism 
did exist, the growth stimulation was entirely offset by the direct climatic consequences of eruptions. Pho-
tosynthesis in open-canopy forests like the Sukakpak and Firth River sites is also unlikely to benefit from 
increased diffuse radiation in that same way as forests with dense canopies (D'Arrigo et al., 2013; Roderick 
et al., 2001). In contrast to Robock (2005); Tingley et al. (2014) suggested that tree-ring proxies overestimat-
ed the amount of cooling following volcanic eruptions due to the reduction in light and a decline in biolog-
ical productivity. However, the Firth River and Sukakpak sites are considered temperature—and not radia-
tion—limited regions (Nemani, 2003; Tingley et al., 2014) and Alaskan temperature reconstructions do not 
show a consistent bias compared to observations following known eruptions (K. J. Anchukaitis et al., 2017; 
Tingley et al., 2014). Körner (1998, 2003) furthermore concluded that trees at Alpine treeline were not limit-
ed by carbon availability or photosynthetic rate, but rather directly by temperature through sink-meditated 
processed in the cambium. Our results here collectively demonstrate that apparently excessive cooling in 
some reconstructions (c.f. Tingley et al., 2014) could arise simply from the timing of an abrupt cooling event 
and its effect on the annual ring's MXD value. For the 1783–1784 CE Laki eruption, the annual MXD value 
may appear to overestimate the effect from cooling in 1783 at some sites simply because low MXD is cap-
turing an abrupt extreme event in the late summer but is used within climate reconstructions to estimate 
the temperature over the entire summer. Further research using modern ecological and biogeochemical 
observations is needed to determine if indeed there are any collinear or confounding temperature and light 
effects on tree-ring proxies in response to volcanic eruptions (D'Arrigo et al., 2013).

Model simulations of tropical and high-latitude eruptions during the last millennium actually show a more 
pronounced volcanic cooling signal than proxy reconstructions using MXD (Masson-Delmotte et al., 2013; 
L. Schneider et  al.,  2017; Stoffel et  al.,  2015; Wilson et  al.,  2016). Overestimation of volcanic cooling in 
climate models can be due to unknown eruption season or location, simplified or inaccurate simulation 
of aerosol microphysics, and uncertainty in SO2 injection amount and heights (LeGrande et al., 2016; Tim-
mreck et  al.,  2009; Stoffel et  al.,  2015). While there are still uncertainties concerning the SO2 injection 
heights, the location and timing of the Laki eruption are reasonably well known and are applied in the mod-
el experiments used here. As we demonstrate, there is a large amount of variability in the possible climate 
states following the Laki eruption (Figure 5). Any one of these states could reflect the climate anomalies 
that lead to a hypothetical proxy observation. The proxy data are subject to internal climate variability but 
are usually compared against the forced climate response in the form of an ensemble mean or a multimodel 
average, which conflates internal variability and structural differences between models (Deser et al., 2014). 
Internal climate variability needs to be considered in proxy-climate comparisons to better understand 
whether or not a specific model may be structurally overestimating volcanic cooling.
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5.  Conclusion
Volcanic eruptions are one of the most important natural climate forcings, particularly over the late Hol-
ocene. Despite this, models and proxy reconstructions disagree about the extent and timing of cooling. To 
resolve discrepancies between modeled volcanic forcing and proxy observations, we find that QWA meas-
urements can provide novel information beyond that available from annual MXD or TRW values alone. 
Specifically, high-resolution QWA data can identify the precise timing of cooling within the growing season, 
potentially be used to quantify temperature anomalies during narrower periods of the growing season, and 
differentiate between overall growing season cooling and transient cold events following eruptions. The 
seasonal information revealed by QWA can also be incorporated directly in proxy systems modeling within 
data assimilation approaches to climate field reconstruction (Tardif et al., 2019). Previous mismatches be-
tween modeled volcanic forcing and proxy observations have been traced in part to the type of proxy data 
used (Esper et al., 2015; Zhu et al., 2020). MXD is still considered the most appropriate proxy to detect vol-
canic cooling signals and provides the most robust temperature reconstructions, but calibration of the proxy 
with the instrumental record necessarily assumes that it directly or indirectly reflects temperatures integrat-
ed over the entire summer or extended growing season. By investigating the cell characteristics throughout 
the 1783 ring, it becomes clear that growth in that year was not negatively affected by cold anomalies until 
later in the growing season. Our multi-method approach here shows that the severely low MXD in 1783 in 
at least some Alaskan tree-ring chronologies is a result of a rapid late-summer cooling and is unlikely to 
be representative of the rest of the growing season that preceded it. In the case of the Laki eruption, which 
began in June, MXD reconstructions probably overestimate the duration and magnitude of the cooling over 
northern Alaska when calibrated against average summer temperatures. Beyond improving spatial cover-
age of MXD networks (K. J. Anchukaitis et al., 2017; Esper et al., 2018; Zhu et al., 2020), a better understand-
ing of the growth-environment relationship is needed to understand how trees as proxies record volcanic 
forcing. QWA provides a valuable new tool for more precisely quantifying the timing and magnitude of the 
climate response to volcanism, and long continuous QWA chronologies could help support more accurate 
reconstructions of last millennium.
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